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In Part I, we give some historical context of saturation properties of ideals on
ω1 and the nonstationary ideal in particular. Specifically, we look at precipitous,
saturated and ω1-dense ideals. We also give a (very!) brief introduction to Pmax

and Qmax.

In Part II, we motivate the strategy we will follow to force “NSω1
is ω1-

dense” from large cardinals. We have to develop a technique which allows
iterating forcings which are not stationary set preserving without collapsing ω1.
One key idea here is that one should not kill “old” stationary sets. We introduce
a new class of forcings, the respectful forcings which roughly play the role of
semiproperness in the main iteration theorem.

In Part III, we deal with the key Π1-property we have to preserve along
the iteration, namely a witness to ♢pωăω

1 q. We look more closely at associated
classes of forcings, loosely called♢-forcings, and introduce the forcing axiom QM
which implies “NSω1 is ω1-dense”. We finally consider version of the Asperó-
Schindler-forcing that we can understand as “the sealing forcing for ω1-density”.
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0 Part I

We prove the following theorem:

Theorem 0.1 (L.). If there is an inaccessible κ which is a limit of ăκ-supercompact
cardinals then there is a stationary set preserving forcing P with

V P |ù “NSω1 is ω1-dense”.

Convention 0.2. All ideals in this talk are uniform, normal and on ω1.

• If I is an ideal then the associated forcing is PI “ Ppω1q{ „I with the
order induced by inclusion. Here, A „I B iff A△B P I.

• If G is PI-generic over V then UG “ tA | rAs„I P Gu is a V -ultrafilter
which induces the generic ultrapower

jG : V Ñ UltpV,UGq.

0.1 Precipitous Ideals

Definition 0.3. An ideal I is precipitous if: For all generic G Ď PI , UltpV,UGq

is wellfounded.

Theorem 0.4 (Mitchell, [JMMP80]). A precipitous ideal on ω1 can be forced
from a measurable cardinal.

Idea: Collapse a measurable to ω1, the ideal dual to the measure on κ then
generates a precipitous ideal in the extension.

Theorem 0.5 (Magidor, [JMMP80]). “NSω1
is precipitous” can be forced from

a measurable cardinal.

Idea: First collapse measurable to ω1 as above, then turn the precipitous
ideal into NSω1

by killing stationary sets.
This is optimal:

Theorem 0.6 ([JMMP80]). The following theories are equiconsistent:

1. ZFC` “There is a precipitous ideal”

2. ZFC` “There is a measurable cardinal”

0.2 Saturated Ideals

Definition 0.7. An ideal I on ω1 is saturated if PI is ω2-cc.

Saturated ideals are precipitous.

Theorem 0.8 (Kunen,[Kun78]). A saturated ideal on ω1 can be forced from a
huge cardinal.
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Idea: Let j : V Ñ M witness that κ is huge. Turn κ into ω1 and jpκq into
ω2 with a special kind of collapse to make lifting arguments work.

Theorem 0.9 (Steel-Van Wesep,[SVW82]). “NSω1
is saturated” can be forced

over (canonical) models of AD`ACR.

Precursor to Pmax.

Theorem 0.10 (Foreman-Magidor-Shelah,[FMS88]). “NSω1
is saturated” can

be forced from a supercompact cardinal by semiproper forcing.

This was done by forcing the forcing axiom MM. To each maximal antichain
A of NS`

ω1
, one associates the sealing forcing SA which preserves stationary sets

and turns A into a maximal antichain of size ď ω1. At this point A is “sealed”,
i.e. the maximality of A cannot be destroyed by further forcing without col-
lapsing ω1. Applying MM to SA shows that A is sealed to begin with.

Key tool: Iteration of semiproper forcing.

Definition 0.11. A forcing P is proper iff for any large enough regular θ, for
any countable X ă Hθ with P P X and any p P PXX, there is a pX,Pq-generic
condition q ď p, that is

q , X̌r 9Gs X V “ X̌.

Countably closed forcings and ccc forcings are proper. Proper forcings are
not useful to force “NSω1 is saturated” as proper forcings cannot increase δ12 .

Theorem 0.12 (Woodin,[Woo10]). Suppose NSω1
is saturated and Ppω1q

7 ex-
ists. Then δ12 “ ω2.

Definition 0.13. A forcing P is semiproper iff for any large enough regular
θ, for any countable X ă Hθ with P P X and any p P P X X, there is a
pX,Pq-semigeneric condition q ď p, that is

q , X̌ Ď X̌r 9Gs.

Here, X Ď Y means X Ď Y and X X ω1 “ Y X ω1. Semiproper forcings
preserve stationary subsets of ω1, but can consistently give regular cardinals
countable cofinality.

Theorem 0.14 (Shelah,[She98]). An RCS-iteration of semiproper forcings is
semiproper.

An RCS iteration is just a countable support iteration that takes into ac-
count that there may be new cardinals with countable cofinality in intermediate
extensions.

Theorem 0.15 (Shelah, see [Sch11] for a proof). “NSω1
is saturated” can be

forced from a Woodin cardinal by semiproper forcing.
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Idea: Force with sealing forcings for maximal antichains in NS`
ω1
, but only

if they happen to be semiproper. Otherwise force with Colpω1, 2
ω1q. Use the

Woodin cardinal to prove that sealing forcings are semiproper often enough
along the way.

This is optimal:

Theorem 0.16 (Jensen-Steel, [JS13] see also [Ste17]). If there is a saturated
ideal then there is an inner model with a Woodin cardinal.

This follows from the existence of the core model below a Woodin cardinal
(“without a measurable”) and basic properties of the core model.

0.3 Dense Ideals

Definition 0.17. An ideal I is ω1-dense if PI has a dense subset of size ω1.

• This is equivalent to “PI is forcing equivalent to Colpω, ω1q”.

• It follows that if I,J are ω1-dense then PI – PJ .

• ω1-dense ideals are saturated.

Theorem 0.18 (Woodin, see [AST`22] for a proof). An ω1-dense ideal can be
forced over a canonical model of ADR ` “Θ is regular”.

This gives a model of ZFC` CH, so the ideal is not NSω1
.

Theorem 0.19 (Shelah, Woodin independently). If NSω1
is ω1-dense then CH

fails. In fact, 2ω “ 2ω1 .

Theorem 0.20 (Adolf-Sargsyan-Trang-Wilson-Zeman, Woodin, [AST`22]). The
following theories are equiconsistent:

piq ZF`ADR ` “Θ is regular”.

piiq ZFC` CH` “There is an ω1-dense ideal”.

Theorem 0.21 (Woodin, see [For10] for a proof). If there is an almost huge
cardinal then there is an ω1-dense ideal in a forcing extension.

This is an improvement of Kunen’s argument.

Theorem 0.22 (Woodin,[Woo10]). ZFC ` “NSω1 is ω1-dense” can be forced
over canonical models of AD`.

This was achieved with a sibling of Pmax called Qmax.
This is once again optimal:

Theorem 0.23 (Woodin). The following theories are equiconsistent:

piq ZF`AD.

piiq ZFC` “There is an ω1-dense ideal”.

piiiq ZFC` “NSω1
is ω1-dense”.

This theorem was the initial motivation for what is now known as core model
induction.
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0.4 Pmax and Qmax

Suppose pM, Iq is a countable structure, pM ; P, Iq |ù ZFC´
` “ω1 exists” `

“I is a precipitous ideal”. (We do not require I PM , merely amenability.
If g0 is generic over pM0, I0q “ pM, Iq for pPI0

qpM, Iq in the sense that g0 hits
all maximal antichains definable over pM ; P, Iq then get

j0 : pM0; P, I0q Ñ pM1; P, I1q.

Where pM1, I1q “ UltppM0, I0q, Ug0q. Can iterate this procedure, take direct
limit at limit steps.

Definition 0.24. pM, Iq is generically iterable if all (countable) generic iterates
of pM, Iq are wellfounded.

Definition 0.25. A Pmax-condition is of the form p “ pM, I, aq where

piq pM, Iq is generically iterable.

piiq M |ù MAω1

piiiq a PM and M |ù “a Ď ω1 ^ ω
Lras

1 “ ω1”.

Pmax is ordered by pN,J , bq ď pM, I, aq iff there is a generic iteration of pM, Iq
in N with final map

j : pM, I, aq Ñ pM˚, I˚, a˚q

so that I˚ “ J XM˚ and a˚ “ b.

Point piiq and piiiq guarantee that any generic iteration of pM, Iq is com-
pletely determined by the image of a in the final model. Hence, if G is a
Pmax-filter then

DGtp, πp,q | q ď p, p, q P Gu

is a directed system where πp,q is the unique final iteration map witnessing
q ď p.
If ADLpRq holds then Pmax is “self-replicating”: if G is Pmax-generic then the
direct limit pMG, IG, aGq along DG is a “big Pmax-condition”, i.e. it is a Pmax-
condition in V Colpω,ω1q in which it becomes countable. MG collects many Σ1-
truths along the directed system, indeed Woodin shows that the Σ1-theory of
MG is maximal (as large as it could be reasonably).

It turns out that

pMG, IGq “ pHω2 ,NSω1q
LpRqrGs.

This motivates the following axiom:

Definition 0.26. p˚q holds if LpRq |ù AD and there is a Pmax-filter G generic
over LpRq with

pMG, IGq “ pHω2
,NSω1

q.
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Theorem 0.27 (Woodin,[Woo10]). If LpRq |ù AD and G is Pmax-generic over
LpRq then LpRqrGs |ù ZFC` “NSω1 is saturated”.

However, NSω1 is not ω1-dense in LpRqPmax.

Definition 0.28. A Qmax-condition is of the form p “ pM, I, fq where

piq pM, Iq is generically iterable.

piiq pM ; P, Iq |ù “I is ω1-dense”.

piiiq f P M and M |ù “f witnesses ♢`
I pω

ăω
1 q” (see Part II, here this means

that f codes a dense embedding Colpω, ω1q Ñ PI).

Qmax is ordered by pN,J , gq ď pM, I, fq iff there is a generic iteration of pM, Iq
in N with final map

j : pM, I, fq Ñ pM˚, I˚, f˚q

so that I˚ “ J XM˚ and f˚ “ g.

Qmax is self-replicating, similar to Pmax. Once again, a generic iteration of
a Qmax-condition pM, I, fq is uniquely determined by the final image of f .

Theorem 0.29 (Woodin,[Woo10]). If LpRq |ù AD and G is Qmax-generic over
LpRq then LpRqrGs |ù ZFC` “NSω1 is ω1-dense”.

1 Part II

1.1 The Ansatz

• Qmax-p˚q is p˚q with Pmax replaced byQmax. By Asperó-Schindler, MM``
ñ

p˚q. There should be some forcing axiom FA which solves

MM``

p˚q
“

FA

Qmax-p˚q
.

• So FA implies Qmax-p˚q which in turn implies“NSω1
is ω1-dense”.

Only known way to force such a strong forcing axiom:

• Iterate small nice-ish forcings up to a supercompact κ via a RCS-iteration
P “ xPα, 9Qβ | α ď γ, β ă γy.

• Invoke an iteration theorem to argue that ω1 (and suitable additional
structure) is preserved along the iteration.

• Employ Baumgartner’s argument to get the forcing axiom.

Here, have “NSω1
is ω1-dense” in V P as witnessed by a sequence S⃗ “ xSi |

i ă ω1y of stationary sets. P is κ-cc so that already S⃗ P V Pα for some α ă κ.
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• Most likely, NSω1 is not ω1-dense in V Pα .

• But then Pα,κ must kill stationary sets of V Pα .

Proof. In V Pα let T Ď ω1 be stationary so that no Si is below T (i.e.
SizT P NS`

ω1
for all i). There are only two ways to fix this: Either kill

T , or kill SizT for some i ă ω1. Either way involves killing a stationary
set.

• Also Pα,κ must preserve the Π1-properties of S⃗ that hold in V P.

1.2 Iterating while killing stationary sets

The First Obstacle

For a stationary S Ď ω1, let CSpSq denote the forcing that shoots a club
through S.

• Let ω1 “
Ť

n Sn be a partition into stationary sets.

• Consider the iteration P “ xPn, 9Qm | n ď ω,m ă ωy where

,Pn
9Qn “ CSpω1 ´ Šnq

(choose your favorite support).

• In V P, ωV
1 is the countable union of non-stationary sets.

• So ωV
1 is collapsed.

• Problem: At each step, we go back to V to kill a set from there.

• Solution: Only kill stationary sets that were just added in the
last step!

The Second Obstacle

This is Shelah’s example of an iteration of SSP forcings collapsing ω1 (see
[She98]).

• First force a function g0 : ω1 Ñ ω1 above all canonical functions. Then
force some g1 above all canonical functions, but below g0. Continue like
this, get

canonical functions ă gn ă gn´1 ă ¨ ¨ ¨ ă g1 ă g0 mod NSω1

at stage n. These forcings preserve stationary sets, but not all are semiproper.
In the limit ω1 is collapsed (as there is no infinite decreasing sequence of
such functions).
Solution: Mostly use forcings with good “regularity properties”.
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These are the only two obstacles!

Theorem 1.1 (L.). Let xPα, 9Qβ | α ď γ, β ă γy be a RCS-iteration of ω1-
preserving forcings and assume that for all α ă γ:

• ,Pα`1
SRP

• ,Pα
“ 9Qα preserves stationary sets from

Ť

βăα V r 9Gβs”

Then P preserves ω1.

This is a “cheapo iteration theorem”, but good enough for our purposes.
SRP hides the relevant regularity property. What is it?
For now consider an iteration P “ xPn, 9Qm | n ď ω,m ă ωy iteration of

length ω of ω1-preserving forcings that do not kill “old stationary sets”.

• Want to argue somehow that P preserves ω1.

• So must find countable X ă Hθ and p so that

p , X̌ Ď X̌r 9Gs.

Let X ă Hθ countable with P P X. Want to find pn P Pn so that ppnqnăω is
decreasing in P and

pn ,Pn
X̌ Ď X̌r 9Gns.

Suppose in step n of this argument, have

• Next forcing Q “ 9QGn
n

• S Ď ω1 is stationary, S P XrGns but ,Q Š P NSω1
and

• δXrGns :“ XrGns X ω1 P S.

Then there is no way to continue! Must avoid this at all cost!
So need to start with X which avoids this problem, i.e. if S P X and Q0

kills S then δX R S. This is easily possible!
Our regularity property should hand us some p0 P Q0 with

p0 ,Q0
X̌ Ď X̌r 9G1s.

Even then, we might end up with the same problem at the next step XrG1s! So
p0 must moreover avoid this situation for XrG1s!

Definition 1.2. Say that a countable Y ă Hθ respects an ideal I if δY R S
whenever S P I X Y .

In other words, need that XrG1s respects the ideal tS Ď ω1 | Q1 kills Su.

Definition 1.3. Suppose Q is ω1-preserving forcing. Q is respectful if: When-
ever
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• Y ă Hθ countable, Q P Y , p P QX Y

• 9I P Y is a Q-name for an ideal on ω1.

Then one of the following:

1. There is q ď p and q forces

Y Ď Y rGs ^ Y rGs respects 9IG

2. Or: Y does not respect 9Ip :“ tS Ď ω1 | p , Š P 9Iu.

This is a very strong regularity property! If Q is respectful and preserves
stationary sets then Q is semiproper, but semiproper forcings need not be re-
spectful.

Let’s get back to our toy problem. Start with X ă Hθ with P P X so that
X respects tS Ď ω1 | Q0 kills Su.
Let 9I be the Q0-name for

tS Ď ω1 | 9QG1
1 kills Su.

Since 9QG1
1 does not kill old sets, X trivially respects 9I1Q0 Ď V .

If Q0 is respectful then find p0 so that

p0 ,Q0
X̌ Ď X̌r 9G1s ^ X̌r 9G1s respects 9I

9G1 .

We are back in the same situation, only one step further. Can chain these
arguments together!

Lemma 1.4. If P is a countable support iteration of respectful forcings which
do not kill old stationary sets then P preserves ω1.

Unfortunately, RCS iterations of respectful forcings need not be respectful.
But we can simply nuke this problem!

Theorem 1.5 (L.). If SRP holds then every ω1-preserving forcing is respectful.

Proof. Let Q be ω1-preserving, Y ă Hθ, q P QXY , 9I P Y as in definition. Have
to show:

• Either there is r ď q forcing Y Ď Y rGs respects 9IG

• or Y does not respect 9Iq.

Let µ “ p2|Q|q` P Y and S “ tZ ă Hµ | Er ď q forcing “Z Ď ZrGs respects 9IG”u P
Y .
By SRP, can find continuous increasing Z⃗ “ xZα | α ă ω1y P Y s.t.:

• Q, q, 9I P Z0

• Zα ă Hµ
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• Either Zα P S or there is no Zα Ď Z with Z P S.

Let G Ď Q generic, q P G. Let S “ tα ă ω1 | Zα P Su.

Claim 1.6. S P I :“ 9IG.

Proof. Suppose otherwise, S P I`. xZαrGs | α ă ω1y is continuous increasing

sequence of elementary substructures of H
V rGs
µ . Find club C Ď ω1 with α “

δZα “ δZαrGs. For any α P SXC, can find Tα P IXZαrGs with α “ δZαrGs P Tα.
By normality of I, there is S0 Ď S XC in I` and T so that Tα “ T for α P S0.
But then S0 Ď T , contradicting T P I.

Case 1: δY P S. As S P 9Iq X Y , Y does not respect 9Iq.

Case 2: δY R S. As ZδY Ď Y XHµ, Y XHµ R S. Thus there is r ď q forcing

Y Ď Y rGs and Y rGs respects 9IG.

Remark 1.7. In L, Addpω1, 1q is not respectful.

1.3 ♢pωăω
1 q

Recall that we first force a candidate xSi | i ă ω1y which might witness “NSω1

is ω1-dense” in the future. This cannot be any random collection of ω1-many
stationary sets.

Lemma 1.8 (Tennenbaum (?)). If P is a forcing of size ω1 which collapses ω1

then there is a dense embedding π : Colpω, ω1q Ñ P.

• ñ Better: First force a candidate π : Colpω, ω1q Ñ Ppω1qzNSω1
. In the

end, want r9sNSω1
˝ π : Colpω, ω1q Ñ PNSω1

a dense embedding.

• This suggests we should isolate properties of π, and then iterate forcing
preserving these properties of π.

Definition 1.9 (Woodin). ♢pωăω
1 q holds if there is an embedding π : Colpω, ω1q Ñ

Ppω1qzNSω1
so that @p P Colpω, ω1q there are stationarily many countable

X ă Hω2
with

p P tq P Colpω, ω1q XX | ω1 XX P πpqqu is a filter generic over X.

Lemma 1.10. Suppose r¨sNSω1
˝ π : Colpω, ω1q Ñ PNSω1

is a dense embedding.
Then π witnesses ♢pωăω

1 q.

Proof Sketch. Let p P Colpω, ω1q, X ă Hω2
countable so that ω1 XX “: δX P

πppq. Let A Ď Colpω, ω1q, A P X, be a maximal antichain. ñ A :“ r¨sNSω1
˝

πrAs Ď PNSω1
is a max. antichain, thus △A contains a club C P X, so δX P C.

It follows that there is q P X XA with δX P πpqq.

More generally ♢pBq and ♢`pBq
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Definition 1.11. Let B Ď ω1 be a forcing. ♢pBq holds if there is an embedding
π : B Ñ Ppω1qzNSω1 so that @p P B there are stationarily many countable
X ă Hω2

with

p P tq P BXX | ω1 XX P πpqqu is a filter generic over X.

We call such X π-slim.
The stronger ♢`pBq holds if there is π witnessing ♢pBq so that every X ă Hθ

with f,B P X is π-slim.

Lemma 1.12. If ♢ holds then ♢pBq holds for every forcing B Ď ω1 (but not
necessarily ♢`pBq).

2 Part III

Lemma 2.1 (Essentially Woodin,[Woo10]). π : B Ñ Ppω1qzNSω1
witnesses

♢pBq iff r¨sNSω1
˝ π : B Ñ pPNSω1

qW is a complete embedding in some outer
model W .

Definition 2.2. QM is the axiom: Dπ witnessing ♢pωăω
1 q so that

FAω1
ptP | V P |ù “π witnesses ♢pωăω

1 q”uq

holds.

QM implies...

• there is a Suslin tree,

• “almost disjoint coding” fails,

• the Cichon diagram is

l l ■ ■

l ■

l l ■ ■

• SRP^␣MRP.

As a consequence, we also get the following as soon as we show QM to be
consistent:

Corollary 2.3. SRP does not imply MRP.

This may be somewhat surprising as roughly speaking SRP
MM “ MRP

PFA and
clearly MMñ PFA.

Lemma 2.4. QM implies NSω1
is ω1-dense!
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Proof Sketch. Let π witness♢pωăω
1 q. Want to show that π is a dense embedding.

If not, let S P NS`
ω1

with no set in ranpπq below S. Can show that CSpω1 ´ Sq
is π-preserving.

Claim 2.5. CSpω1 ´ Sq is π-preserving.

Proof. Let r P CSpω1´Sq, p P Colpω, ω1q and 9C a name for a club in rHV
ω2
rGssω.

We have to show that if G is generic with r P G then there is a π-slimX ă H
V rGs
ω2

in C with X X ω1 P πppq.
As πppq Ę T mod NSω1 , we can find some countable X ă Hθ with XXω1 P

πppqzT so that X contains all relevant parameters. Let MX be the transitive
collapse of X. As X is π-slim,

g “ tq P Colpω, ω1q
MX | ω1 XX P πpqqu

is generic over MX . We can now build a generic sequence over MX rgs starting
with r. As ωMX

1 R T , this sequence has a lower bound r˚ and r˚ forces XrGs to
be π-slim (essentially by the product lemma). Clearly r˚ forces XrGs to be in
C as well.

But by QM applied to CSpω1 ´ Sq, Hω2
ăΣ1

pHω2
qV

CSpω1´Sq

, contradiction.

The real challenge is to force QM.

Definition 2.6. Suppose π witnesses ♢pBq. A forcing P is π-proper if: When-
ever

• X ă Hθ countable and π-slim, P P X

• p P PXX

Then there is pX,P, πq-generic q ď p, i.e. forces

X “ XrGs X V ^XrGs is π-slim.

Analogously, define π-semiproperness.

Definition 2.7. Suppose π witnesses ♢pBq. A set S Ď ω1 is π-stationary if
for large enough regular θ and all clubs C Ď rHθs

ω there is some π-slim X P C,
X ă Hθ with δX P S.
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B “ ... t1u T a Suslin tree
π-proper is... proper proper + T -preserving

π-semiproper is... semiproper semiproper + T -preserving

B “ ... Cohen forcing
π-proper is... “proper for a weakly Luzin sequence”

π-semiproper is... “semiproper for a weakly Luzin sequence”

Classical ♢-Forcing

complete(« σ-closed)

proper

semiproper

stationary set preserving

ω1-preserving

π-complete

π-proper

π-semiproper

π-stationary set preserving

π-preserving

c.c.c. π-c.c.c.

We really only care about B “ Colpω, ω1q.
Suppose π witnesses ♢pBq.

Theorem Countable support iterations of π-proper forcings are π-proper

Theorem RCS iterations of π-semiproper forcings are π-semiproper.

Corollary 2.8 (Shelah,[She98]). Proper (semiproper) forcings are closed under
countable (RCS) support iterations.

Corollary 2.9 (Essentially Miyamoto[Miy93],[Miy02]). Suppose T is a Suslin
tree. Proper (semiproper) + T -preserving forcings are closed under countable
(RCS) support iterations.

We only want to iterate π-semiproper forcings here for π a witness of♢pωăω
1 q.

Corollary 2.10. If there is a supercompact cardinal then there is a π-semiproper
(and hence π-preserving) poset forcing SRP.

Corollary 2.11. If there is a Woodin cardinal then there is a π-semiproper
(and hence π-preserving) poset forcing “NSω1

is saturated”.

Forcing QM
To force QM we need to
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• force a witness π of ♢pωăω
1 q (easy)

• and then iterate arbitrary π-preserving forcings and preserve π (hard).

• Iterating π-semiproper forcings gives the forcing axiom for all π-stationary
set preserving forcings, but that is not enough!

The iteration theorem from Part II generalizes.

Theorem 2.12. Suppose µ witnesses ♢pBq. Let xPα, 9Qβ | α ď γ, β ă γy be a
RCS-iteration of µ-preserving forcings and assume that for all α ă γ:

• ,Pα`1
SRP

• ,Pα
“ 9Qα preserves µ-stationary sets from

Ť

βăα V r 9Gβs”

Then P preserves µ.

We need to get around the restriction of preserving old stationary sets. Sup-
pose π witnesses ♢pωăω

1 q.

Definition 2.13. A Q-iteration is a RCS iteration P “ xPα, 9Qβ | α ď γ, β ă γy
of π-preserving forcings so that for all α ă γ

• ,Pα`2 SRP

• ,Pα`1 “ 9Qα`1 makes π dense for sets in V r 9Gα`1s”.

Corollary 2.14 (Work-Life-Balance Theorem). Q-iteration preserve π.

This means we can force QM from large cardinals provided we find the 9Qα`1

which make “π dense for ground model sets” (“sealing forcings for ω1-density”).

2.1 The New Sealing Forcing

MM``
ñ p˚q Assuming Hω2 is a “big Pmax-condition”, Asperó-Schindler con-

struct a forcing P so that in V P the following picture exists:

D˚

q0 qω1
“ pN˚, I˚, b˚q

p0 pωN
1

pω1

ppHω2
qV , pNSω1

qV , AqPmax

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“

P

• µ0,ωN
1

witnesses q0 ăVmax
p0 and µ0,ω1

“ σ0,ω1
pµ0,ωN

1
q.

• The top iteration q0 Ñ qω1 is correct in V P, i.e. I˚ “ pNSω1q
V P
XN˚.
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Modifications We want to replace Pmax by Qmax. Immediate problem: Then
we have to assume that pHω2 ,NSω1q is (part of) a big Qmax-condition. So NSω1

must already be ω1-dense!

Definition 2.15. Q´
max-conditions are of the form pM, I, πq with:

• pM, Iq is generically iterable.

• M |ù“π witnesses ♢`
I pω

ăω
1 q”

q “ pN, J, τq ăQ´
max

pM, I, πq “ p iff in N there is a generic iteration (map)
j : pÑ p˚ “ pM˚, I˚, π˚q such that:

• π˚ “ τ

• τ is dense for sets in M˚, i.e. if S P Ppω1q
M˚

then

– either S P J

– or Dp P Colpω, ωN
1 q τppq Ď S mod J .

Qmax embeds densly into Q´
max (assuming ADLpRq).

Does it work now? We can force pHω2
,NSω1

, πq to be a “big Q´
max-condition”

using π-semiproper forcing. Following Asperó-Schindler, we get:

q0 qω1
“ pN˚, I˚, τ˚q

p0 pωN
1

pω1

ppHω2
qV , pNSω1

qV , πqQ´
max

σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“

P
• µ0,ωN

1
witnesses q0 ăVmax

p0 and µ0,ω1
“ σ0,ω1

pµ0,ωN
1
q.

• The top iteration q0 Ñ qω1 is correct in V P, i.e. I˚ “ pNSω1q
V P
XN˚.

So P makes π dense for sets in V , great! But this it preserve π? Unclear!!
♢-Iterations

Definition 2.16. A generic iteration xpMα, Iαq, µα,β | α ď β ď ω1y is a ♢-
iteration if: For any sequence xDi | i ă ω1y of dense subsets of pPpω1q

Mω1 {Iω1
q`

and any S P I`
ω1
XMω1 have

tα P S | @i ă α Uα X µ´1
α,ω1

rDis ‰ Hu P NS`
ω1

where Uα is the generic ultrafilter applied to Mα.

All ♢-iterations are correct in the sense that if pM˚, I˚q is the final model
of a ♢-iteration then I˚ “ NSω1

XM˚. But more structure is preserved now!
E.g. if T PM˚ is a Suslin tree in M˚ then T is really Suslin.

Even better:
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Lemma 2.17. Suppose pM˚, I˚q is the final model of a ♢-iteration. If

pM˚; P, I˚q |ù “π witnesses ♢`

I˚pBq

then π witnesses ♢pBq in V .

Theorem 2.18 (L.). Can modify Asperó-Schindler’s P to P♢ so that in V P♦

the same picture as before exists and q0 Ñ qω1
is a ♢-iteration in V P♦ .

This is the final piece! We can get our sealing forcings from Woodin cardi-
nals!

Corollary 2.19. QM implies Qmax-p˚q.

Theorem 2.20. If there is a supercompact limit of supercompact cardinals then
QM holds in a stationary set preserving forcing extension.

Proof Sketch. First force with Colpω1, 2
ω1q. In the extension, we have a witness

π of ♢pωăω
1 q.

Do a Q-iteration up to a supercompact cardinal. If this cardinal is a limit
of supercompacts as well, we have enough fuel to constantly force SRP via π-
semiproper forcing. To make the new sealing forcing work, we only need Woodin
cardinals. If we picked π carefully, the whole iteration will preserve stationary
sets from V (collapsing 2ω1 makes this possible).

Theorem 2.21. If there is an inaccessible κ which is a limit of ăκ-supercompact
cardinals then there is a stationary set preserving P with

V P |ù “NSω1
is ω1-dense”.

Proof. Pick π as before in V rgs, an extension by Colpω, 2ω1q. Then force over
V rGs with an iteration P which is a proper class length Q-iteration from the
perspective of V rgsκ.

2.2 The Mystery

How much can the large cardinal assumption of the main theorem be reduced?
We used

• an inaccessible on the top to “catch our tail”,

• Woodin cardinals for the “new sealing forcing” and

• (partial) supercompact to satisfy the greedy iteration theorem.

If we could do without SRP, we could plausibly lower the assumption to an
inaccessible limit of Woodin cardinals!

Theorem 2.22 (Woodin,[Woo]). The large cardinal assumption of the main
theorem cannot be reduced to an inaccessible limit of Woodin cardinals. In fact,
consistently there is a model with an inaccessible limit of Woodin cardinals but
no ω1-preserving poset forcing “NSω1

is ω1-dense”.
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Proof. Work in the least inner modelM with an inaccessible limit of Woodin car-
dinals and a proper class of Woodin cardinals. SupposeM rGs |ù “NSω1 is ω1-dense”

and ωM
1 “ ω

MrGs

1 .
We show that in an extension of M rGs, there are divergent models of AD

(theorem then follows from gap in consistency strengths). In M , we have ♡ :

@α ă ω1Dx P R px codes α^ x P ODLpA,Rq for some A P uBq (♡)

Why? Let β ă ω1 so that M}β Q x some code for α. For Σ “ pω, ω1, ω1q-

iteration strategy for M}β, have x P ODLpΣ,Rq.
Note that ♡ still holds in M rGs! Let g be M rGs-generic for PNSω1

– Colpω, ω1q.
We get a generic embedding

jg : M rGs Ñ N.

By ♡ in N , let x code ωM
1 , x P ODLpA,RN

q, LpA,RN q |ù AD. Now, RN “

RMrGsrgs. If there are no divergent models in M rGsrgs then LpA,RN q is de-

finable in M rGsrgs from ΘLpA,RN
q. But then x is ODMrGsrgs, so x P M rGs by

homogeneity of Colpω, ω1q, contradiction!
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