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In Part I, we give some historical context of saturation properties of ideals on
w1 and the nonstationary ideal in particular. Specifically, we look at precipitous,
saturated and wq-dense ideals. We also give a (very!) brief introduction to Ppax
and Qpuax.

In Part II, we motivate the strategy we will follow to force “NS,, is w;-
dense” from large cardinals. We have to develop a technique which allows
iterating forcings which are not stationary set preserving without collapsing w; .
One key idea here is that one should not kill “old” stationary sets. We introduce
a new class of forcings, the respectful forcings which roughly play the role of
semiproperness in the main iteration theorem.

In Part III, we deal with the key II;-property we have to preserve along
the iteration, namely a witness to $(wi®). We look more closely at associated
classes of forcings, loosely called {>-forcings, and introduce the forcing axiom QM
which implies “NS,,, is wi-dense”. We finally consider version of the Asperd-
Schindler-forcing that we can understand as “the sealing forcing for w;-density”.



0 Partl

We prove the following theorem:

Theorem 0.1 (L.). If there is an inaccessible k which is a limit of <k-supercompact
cardinals then there is a stationary set preserving forcing P with

VE = “NS,, is wi-dense”.
Convention 0.2. All ideals in this talk are uniform, normal and on w;.

o If 7 is an ideal then the associated forcing is Pz = P(w;1)/ ~z with the
order induced by inclusion. Here, A ~7 B iff AAB e T.

e If G is Pz-generic over V then Ug = {A | [4]~
which induces the generic ultrapower

€ G} is a V-ultrafilter

z

ja: V — Ul(V,Ug).

0.1 Precipitous Ideals

Definition 0.3. An ideal [ is precipitous if: For all generic G < Pz, Ult(V,Ug)
is wellfounded.

Theorem 0.4 (Mitchell, [JMMP80]). A precipitous ideal on w1 can be forced
from a measurable cardinal.

Idea: Collapse a measurable to wy, the ideal dual to the measure on k then
generates a precipitous ideal in the extension.

Theorem 0.5 (Magidor, [JMMP80]). “NS,,, is precipitous” can be forced from
a measurable cardinal.

Idea: First collapse measurable to w; as above, then turn the precipitous
ideal into NS,,, by killing stationary sets.
This is optimal:

Theorem 0.6 ([JMMP80]). The following theories are equiconsistent:
1. ZFC + “There is a precipitous ideal’

2. ZFC + “There is a measurable cardinal’

0.2 Saturated Ideals
Definition 0.7. An ideal I on w; is saturated if Pz is wy-cc.
Saturated ideals are precipitous.

Theorem 0.8 (Kunen,[Kun78]). A saturated ideal on wy can be forced from a
huge cardinal.



Idea: Let j: V — M witness that  is huge. Turn & into wy and j(k) into
wy with a special kind of collapse to make lifting arguments work.

Theorem 0.9 (Steel-Van Wesep,[SVW82]). “NS,,, is saturated” can be forced
over (canonical) models of AD + ACg.

Precursor to Ppax.

Theorem 0.10 (Foreman-Magidor-Shelah,[FMS88]). “NS,,, is saturated” can
be forced from a supercompact cardinal by semiproper forcing.

This was done by forcing the forcing axiom MM. To each maximal antichain
Aof N S:Sl, one associates the sealing forcing S 4 which preserves stationary sets
and turns A into a maximal antichain of size < wy. At this point A is “sealed”,
i.e. the maximality of A cannot be destroyed by further forcing without col-
lapsing wy. Applying MM to S4 shows that A is sealed to begin with.

Key tool: Iteration of semiproper forcing.

Definition 0.11. A forcing P is proper iff for any large enough regular 6, for
any countable X < Hy with P e X and any p € P n X there is a (X, P)-generic
condition g < p, that is _

¢ X[G]nV =X

Countably closed forcings and ccc forcings are proper. Proper forcings are
not useful to force “NS,, is saturated” as proper forcings cannot increase 3.

Theorem 0.12 (Woodin,[Woo10]). Suppose NS, is saturated and P(w;)! ex-
ists. Then 83 = ws.

Definition 0.13. A forcing P is semiproper iff for any large enough regular
0, for any countable X < Hy with P € X and any p € P n X, there is a
(X, P)-semigeneric condition ¢ < p, that is

qI- X = X[G].

Here, X © Y means X € Y and X nw; = Y nw;. Semiproper forcings
preserve stationary subsets of wj, but can consistently give regular cardinals
countable cofinality.

Theorem 0.14 (Shelah,[She98]). An RCS-iteration of semiproper forcings is
semiproper.

An RCS iteration is just a countable support iteration that takes into ac-
count that there may be new cardinals with countable cofinality in intermediate
extensions.

Theorem 0.15 (Shelah, see [Schll] for a proof). “NS,, is saturated” can be
forced from a Woodin cardinal by semiproper forcing.



Idea: Force with sealing forcings for maximal antichains in NS} ,» but only
if they happen to be semiproper. Otherwise force with Col(wy,2%?). Use the
Woodin cardinal to prove that sealing forcings are semiproper often enough
along the way.

This is optimal:

Theorem 0.16 (Jensen-Steel, [JS13] see also [Stel7]). If there is a saturated
tdeal then there is an inner model with a Woodin cardinal.

This follows from the existence of the core model below a Woodin cardinal
(“without a measurable”) and basic properties of the core model.

0.3 Dense Ideals

Definition 0.17. An ideal 7 is wi-dense if Pz has a dense subset of size w;.
e This is equivalent to “Pz is forcing equivalent to Col(w,w;)”.
o It follows that if Z, J are w;-dense then Pz =~ P .
e wi-dense ideals are saturated.

Theorem 0.18 (Woodin, see [AST*22] for a proof). An ws-dense ideal can be
forced over a canonical model of ADg + “© is regular”.

This gives a model of ZFC + CH, so the ideal is not NS, .

Theorem 0.19 (Shelah, Woodin independently). If NS, is wi-dense then CH
fails. In fact, 2¥ = 21,

Theorem 0.20 (Adolf-Sargsyan-Trang-Wilson-Zeman, Woodin, [AST*22]). The
following theories are equiconsistent:

(i) ZF + ADg + “© is regular”.
(14) ZFC + CH + “There is an wy-dense ideal”.

Theorem 0.21 (Woodin, see [Forl0] for a proof). If there is an almost huge
cardinal then there is an wy-dense ideal in a forcing extension.

This is an improvement of Kunen’s argument.

Theorem 0.22 (Woodin,[Woo10]). ZFC + “NS,,, is wy-dense” can be forced
over canonical models of AD™.

This was achieved with a sibling of P« called Qpax.
This is once again optimal:

Theorem 0.23 (Woodin). The following theories are equiconsistent:
(1) ZF + AD.
(16) ZFC + “There is an wy-dense ideal”.

(13i) ZFC + “NS,,, is wi-dense”.

This theorem was the initial motivation for what is now known as core model
induction.



0.4 P... and Q..

Suppose (M,Z) is a countable structure, (M;€,7) = ZFC™ + “w; exists” +
“T is a precipitous ideal”. (We do not require Z € M, merely amenability.

If go is generic over (Mg, Zo) = (M, T) for (Pz,)(M,T) in the sense that go hits
all maximal antichains definable over (M;e,Z) then get

Jo: (Mo;€,Zo) — (My;€,11).

Where (M7,Z1) = Ult((Mo,Zp), U, ). Can iterate this procedure, take direct
limit at limit steps.

Definition 0.24. (M,T) is generically iterable if all (countable) generic iterates
of (M,Z) are wellfounded.

Definition 0.25. A P,,.x-condition is of the form p = (M,Z,a) where
(1) (M,Z) is generically iterable.
(i1) M = MA,,

(#it) ae M and M = “a S wy A oJlL[a] =wp”.

Pmax is ordered by (N, 7,b) < (M,Z,a) iff there is a generic iteration of (M,7)
in N with final map
jt (M,Z,a) —» (M*,I%,a")

so that Z* = J n M* and a* = b.

Point (i7) and (éi7) guarantee that any generic iteration of (M,Z) is com-
pletely determined by the image of @ in the final model. Hence, if G is a
Prax-filter then

Deip,7pq | ¢ <p,p,qe G}

is a directed system where m,, is the unique final iteration map witnessing
q<p.

If ADY® holds then Prax is “self-replicating”: if G is Pyax-generic then the
direct limit (Mg, Zg, ag) along D¢ is a “big Ppax-condition”, i.e. it is a Ppax-
condition in VC°U««1) in which it becomes countable. Mg collects many ;-
truths along the directed system, indeed Woodin shows that the ¥;-theory of
My is maximal (as large as it could be reasonably).

It turns out that

(Mg, Ig) = (H,,,NS,, ) -®IC],

This motivates the following axiom:

Definition 0.26. () holds if L(R) = AD and there is a Py, -filter G generic
over L(R) with
(MGaIG) = (szaNSwl)'



Theorem 0.27 (Woodin,[Woo010]). If L(R) = AD and G is Pyax-generic over
L(R) then L(R)[G] = ZFC + “NS,,, is saturated”.

P

max*

However, NS, is not w;-dense in L(R)

Definition 0.28. A Q,.x-condition is of the form p = (M,Z, f) where
(1) (M,T) is generically iterable.
(i1) (M;e,T) = “T is wi-dense”.

(iii) f € M and M = “f witnesses $F (wi)” (see Part II, here this means
that f codes a dense embedding Col(w,w;) — Pz).

Qmax is ordered by (N, 7, g) < (M,Z, f) iff there is a generic iteration of (M, Z)
in N with final map
J: (M,Z, f) — (M*,I%, f¥)

so that T% = J n M* and f* = g.

Qumax is self-replicating, similar to Pp.x. Once again, a generic iteration of
a Quax-condition (M,Z, f) is uniquely determined by the final image of f.

Theorem 0.29 (Woodin,[Wool0]). If L(R) = AD and G is Quax-generic over
L(R) then L(R)[G] = ZFC + “NS,,, is wi-dense”.

1 Part II

1.1 The Ansatz

o Quax-(#) is (¥) with Py, replaced by Quax. By Asperé-Schindler, MM+ =
(#). There should be some forcing axiom FA which solves

MM ™ _ FA
(*) Qmax'(*) .

e So FA implies Quax-(*) which in turn implies“NS,,, is w;-dense”.
Only known way to force such a strong forcing axiom:

e Iterate small nice-ish forcings up to a supercompact  via a RCS-iteration
P={Po,Qs |a<v,8 <)

e Invoke an iteration theorem to argue that w; (and suitable additional
structure) is preserved along the iteration.

e Employ Baumgartner’s argument to get the forcing axiom.

Here, have “NS,,, is wi-dense” in V¥ as witnessed by a sequence S = (S; |
i < wy) of stationary sets. P is k-cc so that already S € Ve for some a < k.



e Most likely, NS,,, is not wi-dense in VPa,

e But then P, , must kill stationary sets of V.
Proof. In V¥« let T < w; be stationary so that no S; is below T' (i.e.
SA\T € NS:L'1 for all 7). There are only two ways to fix this: Either kill

T, or kill S;\T for some i < wy. Either way involves killing a stationary
set. O

e Also P, . must preserve the II;-properties of S that hold in VF.

1.2 Iterating while killing stationary sets
The First Obstacle

For a stationary S € wi, let CS(S) denote the forcing that shoots a club
through S.

Let wy = |J,, S» be a partition into stationary sets.
e Consider the iteration P = (P,,,Q,, | n < w, m < w) where
|HP’,,, Qn = CS(Wl - Sn)

(choose your favorite support).

In VP w) is the countable union of non-stationary sets.

So wy is collapsed.

Problem: At each step, we go back to V to kill a set from there.

Solution: Only kill stationary sets that were just added in the
last step!

The Second Obstacle

This is Shelah’s example of an iteration of SSP forcings collapsing w; (see
[She9s]).

e First force a function gg: w; — w; above all canonical functions. Then
force some g; above all canonical functions, but below gy. Continue like
this, get

canonical functions < g, < gn—1 <--- < g1 <go mod NS,

at stage n. These forcings preserve stationary sets, but not all are semiproper.
In the limit w; is collapsed (as there is no infinite decreasing sequence of
such functions).

Solution: Mostly use forcings with good “regularity properties”.



These are the only two obstacles!

Theorem 1.1 (L.). Let (Po,Qp | @ < 7,8 < 7) be a RCS-iteration of w,-
preserving forcings and assume that for all o < ~y:

® |Fp,., SRP

o IFp, “Qq preserves stationary sets from Us<a VI[Gs]
Then P preserves wy.

This is a “cheapo iteration theorem”, but good enough for our purposes.

SRP hides the relevant regularity property. What is it?

For now consider an iteration P = (P,,Q,, | n < w,m < w) iteration of
length w of wy-preserving forcings that do not kill “old stationary sets”.

e Want to argue somehow that P preserves wj.

e So must find countable X < Hy and p so that
pI- X = X[G].

Let X < Hy countable with P e X. Want to find p,, € P, so that (p,)n<w is
decreasing in P and )
pn ke, X E X[Gr].

Suppose in step n of this argument, have

e Next forcing Q = Qg”

e S C w is stationary, S € X[G,,] but |-g S € NS,, and
o 5XIGnl = X[G, ] nwi €S,

Then there is no way to continue! Must avoid this at all cost!

So need to start with X which avoids this problem, i.e. if S € X and Qg
kills S then 6% ¢ S. This is easily possible!
Our regularity property should hand us some pg € Qg with

Po IFQ, Xc X[Gl]

Even then, we might end up with the same problem at the next step X[G1]! So
po must moreover avoid this situation for X[G1]!

Definition 1.2. Say that a countable Y < Hy respects an ideal Z if 6¥ ¢ S
whenever SeZ nY.

In other words, need that X[G1] respects the ideal {S < w; | Q; kills S}.

Definition 1.3. Suppose Q is wy-preserving forcing. Q is respectful if: When-
ever



e Y < Hy countable, Qe Y, peQnY
e fcYisa @Q-name for an ideal on w;.
Then one of the following:

1. There is ¢ < p and q forces

Y = Y[G] A Y[G] respects I¢

2. Or: Y does not respect I? := {S cwy | p - S e I}.

This is a very strong regularity property! If Q is respectful and preserves
stationary sets then Q is semiproper, but semiproper forcings need not be re-
spectful.

Let’s get back to our toy problem. Start with X < Hy with P € X so that
X respects {S < w; | Qo kills S}.

Let I be the Qp-name for

{S < w | QY Kkills S}.

Since QlGl does not kill old sets, X trivially respects I'% < V.
If Qg is respectful then find py so that

po kg, X © X[G1] A X[G1] respects I

We are back in the same situation, only one step further. Can chain these
arguments together!

Lemma 1.4. If P is a countable support iteration of respectful forcings which
do not kill old stationary sets then P preserves wy.

Unfortunately, RCS iterations of respectful forcings need not be respectful.
But we can simply nuke this problem!

Theorem 1.5 (L.). If SRP holds then every wi-preserving forcing is respectful.

Proof. Let Q be wy-preserving, Y < Hyg,qe QnY, I €Y as in definition. Have
to show:

e Either there is 7 < ¢ forcing Y = Y[G] respects I¢
e or Y does not respect 1.

Let = (29t eYand S = {Z < H, | #r < q forcing “Z = Z[G] respects fG”} €
Y.
By SRP, can find continuous increasing Z = (Z, | @ < wi) € Y s.t.:

b Q7qajEZ0
o Zo<H,



e Either Z, € § or thereis no Z, C Z with Z € S.
Let G € Q generic, g€ G. Let S ={a <w | Z, € S}.
Claim 1.6. Se1:=IC.

Proof. Suppose otherwise, S € IT. (Z,[G] | @ < wy) is continuous increasing

sequence of elementary substructures of H, X (¢ Find club C < wy with a =
§%e = §%21G1 For any € SNC, can find T, € I n Z4|G] with a = §%-lGl e T,
By normality of I, there is Sy € S~ C in It and T so that T, = T for a € Sp.
But then Sy € T', contradicting T € I. O

Case 1: 0¥ € S. As SeI7n Y, Y does not respect 1.
Case 2: 0¥ ¢ S. As Zsy EY nH,, Y nH, ¢S. Thus there is r < ¢ forcing
Y £ Y[G] and Y[G] respects €. O

Remark 1.7. In L, Add(wy, 1) is not respectful.

1.3 O(wrv)

Recall that we first force a candidate (S; | ¢ < w;) which might witness “NS,,
is wy-dense” in the future. This cannot be any random collection of w;-many
stationary sets.

Lemma 1.8 (Tennenbaum (?)). If P is a forcing of size wy which collapses wy
then there is a dense embedding m: Col(w,wy) — P.

e = Better: First force a candidate m: Col(w,w;) — P(w1)\NS,,. In the

end, want []NSW1 om: Col(w,wi) — Pns,, a dense embedding.

e This suggests we should isolate properties of 7, and then iterate forcing
preserving these properties of .

Definition 1.9 (Woodin). ¢(ws*) holds if there is an embedding 7: Col(w,w;) —
P(w1)\NS,, so that ¥p € Col(w,w;) there are stationarily many countable
X < H,, with

p € {qe€ Col(w,w1) N X | w1 n X €7(q)} is a filter generic over X.

Lemma 1.10. Suppose [-]ns
Then m witnesses O(wi?).

om: Col(w,w1) — Pxs,, is a dense embedding.

w

Proof Sketch. Let p € Col(w,w;), X < H,, countable so that w; N X =: 6% €
m(p). Let A < Col(w,w1), A € X, be a maximal antichain. = A := []ns,, ©
m[A] € Pns,, is a max. antichain, thus AA contains a club C' € X, so X eC.
It follows that there is ¢ € X n A with §% € 7(q). O

More generally {>(B) and < (B)
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Definition 1.11. Let B < w; be a forcing. ¢(B) holds if there is an embedding
m: B — P(w1)\NS,, so that ¥p € B there are stationarily many countable
X < H,, with

pe{geB N X |w n X em(q)}is a filter generic over X.

We call such X 7-slim.
The stronger {$+(B) holds if there is m witnessing $(B) so that every X < Hy
with f,B e X is m-slim.

Lemma 1.12. If & holds then {(B) holds for every forcing B € w;y (but not
necessarily Ot (B) ).

2 Part III

Lemma 2.1 (Essentially Woodin,[Wool0]). 7: B — P(w1)\NS,, witnesses
OB) iff [Ins,, om: B — (Pns,,)" is a complete embedding in some outer
model W.

Definition 2.2. QM is the axiom: 37 witnessing ¢ (w®) so that
FA,,({P | VP = “r witnesses $(wi®)”})
holds.
QM implies...

e there is a Suslin tree,

“almost disjoint coding” fails,

U L] n |
. [
e the Cichon diagram is ]—— n
[

U [ n |

e SRP A —=MRP.

As a consequence, we also get the following as soon as we show QM to be
consistent:

Corollary 2.3. SRP does not imply MRP.

SRP _ MRP and

This may be somewhat surprising as roughly speaking 35 = Fpa

clearly MM = PFA.

Lemma 2.4. QM implies NS,,, is wy-dense!

11



Proof Sketch. Let m witness {(w*). Want to show that 7 is a dense embedding.
If not, let S € NS with no set in ran(w) below S. Can show that CS(w; — S)
is m-preserving.

Claim 2.5. CS(w; — S) is m-preserving.

Proof. Let r € CS(w;—5S), p € Col(w,w;) and C a name for a club in [HY [G]]“.

We have to show that if G is generic with r € G then there is a m-slim X < HXQ[G]
in C with X nw; € 7(p).

Asm(p) € T mod NS, , we can find some countable X < Hy with X nw; €
m(p)\T so that X contains all relevant parameters. Let Mx be the transitive
collapse of X. As X is 7-slim,

g = {qe Col(w,w)™* |w; n X en(q)}

is generic over Mx. We can now build a generic sequence over Mx[g] starting
with r. As w{vb‘ ¢ T, this sequence has a lower bound r, and r, forces X[G] to
be m-slim (essentially by the product lemma). Clearly 7, forces X[G] to be in

C as well. O
But by QM applied to CS(wy — 5), Hy, <sx, (HWQ)VCS(WPS)7 contradiction.
O

The real challenge is to force QM.

Definition 2.6. Suppose 7 witnesses {$(B). A forcing P is m-proper if: When-
ever

e X < Hy countable and 7-slim, Pe X
e pePn X
Then there is (X, P, 7)-generic ¢ < p, i.e. forces
X = X[G] nV A X[G] is m-slim.
Analogously, define m-semiproperness.

Definition 2.7. Suppose 7 witnesses $(B). A set S € wy is w-stationary if
for large enough regular 6 and all clubs C € [Hy]“ there is some 7-slim X € C,
X < Hy with 6% € S.

12



B=.. {1} T a Suslin tree
T-proper is... proper proper + T-preserving
m-semiproper is... || semiproper | semiproper + T-preserving
B=.. Cohen forcing
T-proper is... “proper for a weakly Luzin sequence”
m-semiproper is... | “semiproper for a weakly Luzin sequence”
Classical {-Forcing

complete(~ o-closed) m-complete
proper T-proper
semiproper m-semiproper

J

stationary set preserving m-stationary set preserving

J !

wi-preserving T-preserving

!

We really only care about B = Col(w,w;).
Suppose 7 witnesses {(B).

Theorem Countable support iterations of m-proper forcings are w-proper
Theorem RCS iterations of w-semiproper forcings are w-semiproper.

Corollary 2.8 (Shelah,[She98]). Proper (semiproper) forcings are closed under
countable (RCS) support iterations.

Corollary 2.9 (Essentially Miyamoto[Miy93],[Miy02]). Suppose T is a Suslin
tree. Proper (semiproper) + T-preserving forcings are closed under countable
(RCS) support iterations.

We only want to iterate m-semiproper forcings here for 7 a witness of $(w).

Corollary 2.10. If there is a supercompact cardinal then there is a w-semiproper
(and hence m-preserving) poset forcing SRP.

Corollary 2.11. If there is a Woodin cardinal then there is a w-semiproper
(and hence m-preserving) poset forcing “NS,,, is saturated”.

Forcing QM
To force QM we need to

13



e force a witness m of {(wr®) (easy)
e and then iterate arbitrary m-preserving forcings and preserve 7 (hard).

e Iterating m-semiproper forcings gives the forcing axiom for all m-stationary
set preserving forcings, but that is not enough!

The iteration theorem from Part IT generalizes.

Theorem 2.12. Suppose p witnesses H(B). Let <Pa,Qg |a<vy,8<7v) bea
RCS-iteration of u-preserving forcings and assume that for all a < 7y:

b H_]Pa+1 SR’P

o IFp, “Qq preserves p-stationary sets from Us<a VI[Gs]
Then P preserves .

We need to get around the restriction of preserving old stationary sets. Sup-
pose 7 witnesses {(w).

Definition 2.13. A Q-iteration is a RCS iteration P = (PP, Qg la<v,8<9)
of m-preserving forcings so that for all a < ~

® |Fp, 2 SRP
® p, 41 “Qy41 makes 7 dense for sets in V[G’QH]”.
Corollary 2.14 (Work-Life-Balance Theorem). Q-iteration preserve 7.
This means we can force QM from large cardinals provided we find the Qa+1

which make “m dense for ground model sets” (“sealing forcings for w;-density”).

2.1 The New Sealing Forcing

MM*™+ = (¥) Assuming H,,, is a “big Ppay-condition”, Asperd-Schindler con-
struct a forcing P so that in V¥ the following picture exists:

D*
w g
0,
q0 - 4wy :(N*7[*7b*)
:uO,w{V v Mwivvwl v
Po pw{\’ Puwy
m Il
IP)max ((sz)v7 (Nswl)v’ A)

i lU‘O,w{V witnesses 40 <Vyax PO and HO,w1 = 00,w (:LLO,w{V)'

e The top iteration gy — qu, is correct in VF ie. I* = (NSM)VP N N*.

14



Modifications We want to replace Pyax by Qumax. Immediate problem: Then
we have to assume that (H,,,NS,,) is (part of) a big Qmax-condition. So NS,
must already be w;-dense!

Definition 2.15. Q.. -conditions are of the form (M, I, 7) with:
e (M,I) is generically iterable.
o M [=“m witnesses &7 (wi¥)”

q=(N,J,7) <g- (M,I,m) = piff in N there is a generic iteration (map)

max

jip—p* = (M*I* 7*) such that:
=T
e 7 is dense for sets in M*, i.e. if S € P(wl)M* then

— either Se J
— or Ip e Col(w,wd) 7(p) € S mod J.

Qmax embeds densly into Q.. (assuming ADL(R)).

max

Does it work now? We can force (H,,,,NS,,,, ) to be a “big Q. .-condition”

using m-semiproper forcing. Following Asperé-Schindler, we get:

go,
Qo —————— g, = (N*,T*,7%)

/’LO,w{V v Mw{v,wl w
Po pwf’ Puw
m I
max ((Hay)”, (NSy,)Y, )

® JlgN Witnesses go <v,,.. Po and f10.w;, = 00w, (Howy)-
e The top iteration gy — qu, is correct in VF ie. I* = (NSwl)VP N N*,

So P makes 7 dense for sets in V', great! But this it preserve 7?7 Unclear!!
{-Iterations

Definition 2.16. A generic iteration (M, o), tiap | @ < 8 < wi) is a -
iteration if: For any sequence (D; | i < w;) of dense subsets of (P (w;)Me1/I,,)*
and any S € I n M, have

{aoeS|Vi<aU,npg, [Di] # @} eNSH
where U, is the generic ultrafilter applied to M,,.

All {-iterations are correct in the sense that if (M*,Z*) is the final model
of a {-iteration then Z* = NS, n M*. But more structure is preserved now!
E.g. if T'e M* is a Suslin tree in M* then T is really Suslin.

Even better:
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Lemma 2.17. Suppose (M*,Z%) is the final model of a {-iteration. If
(M*;€,T%) |= “m witnesses Ty (B)
then m witnesses ((B) in V.

Theorem 2.18 (L.). Can modify Asperé-Schindler’s P to P¢ so that in Vo
the same picture as before exists and qy — qu, s a {-iteration in VF<.

This is the final piece! We can get our sealing forcings from Woodin cardi-
nals!

Corollary 2.19. QM implies Quax-(*).

Theorem 2.20. If there is a supercompact limit of supercompact cardinals then
QM holds in a stationary set preserving forcing extension.

Proof Sketch. First force with Col(wy,2“1). In the extension, we have a witness
7 of $(wi?).

Do a @Q-iteration up to a supercompact cardinal. If this cardinal is a limit
of supercompacts as well, we have enough fuel to constantly force SRP via -
semiproper forcing. To make the new sealing forcing work, we only need Woodin
cardinals. If we picked 7 carefully, the whole iteration will preserve stationary
sets from V' (collapsing 2¢! makes this possible). O

Theorem 2.21. If there is an inaccessible k which is a limit of <k-supercompact
cardinals then there is a stationary set preserving P with

1748 = “NS,, is wi-dense”.

Proof. Pick 7 as before in V[g], an extension by Col(w,2%?). Then force over
V[G] with an iteration P which is a proper class length Q-iteration from the
perspective of V[g]. O

2.2 The Mystery

How much can the large cardinal assumption of the main theorem be reduced?
We used

e an inaccessible on the top to “catch our tail”,
e Woodin cardinals for the “new sealing forcing” and
e (partial) supercompact to satisfy the greedy iteration theorem.

If we could do without SRP, we could plausibly lower the assumption to an
inaccessible limit of Woodin cardinals!

Theorem 2.22 (Woodin,[Woo]). The large cardinal assumption of the main
theorem cannot be reduced to an inaccessible limit of Woodin cardinals. In fact,
consistently there is a model with an inaccessible limit of Woodin cardinals but
no wi-preserving poset forcing ‘NS, is wi-dense”.
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Proof. Work in the least inner model M with an inaccessible limit of Woodin car-
dinals and a proper class of Woodin cardinals. Suppose M[G] = “NS,,, is wi-dense”
M MI[q]
and wi¥ =w; .
We show that in an extension of M[G], there are divergent models of AD
(theorem then follows from gap in consistency strengths). In M, we have QO :

Vo < widz € R (z codes o A € ODFA®) for some A € uB) Q)

Why? Let 8 < wy so that M8 3 x some code for a. For ¥ = (w,wq,w)-
iteration strategy for M|j3, have z € ODF&®),

Note that © still holds in M[G]! Let g be M[G]-generic for Pxs,,, = Col(w,w1).
We get a generic embedding

Jg: M[G] — N.

By © in N, let x code wi?, = € ODL(A’RN), L(A,RY) = AD. Now, RV =
RMICIl9] Tf there are no divergent models in M[G][g] then L(A,RY) is de-

finable in M[G][g] from ©L(AEY) But then z is ODMICI] g0 2 € M[G] by
homogeneity of Col(w,w;), contradiction! O
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